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Abstract 

A type of air-breathing polymer electrolyte membrane fuel cell 
(PEMFC) stack with a strip design structure was investigated. 
Potential-current curves for this PEMFC show typical mass transfer 
behavior. An empirical equation was developed to describe the 
kinetic processes of the stack, as opposed to only a single cell. A 
series of experimental potential-current and power-current curves 
including different humidities, temperatures, and stack lengths was 
extremely well fitted with the equation. A concept of mass transfer 
impedance is defined in this report. This empirical equation can be 
used to calculate the mass-transfer impedance quantitatively 
beyond the experimental points, for example, with decreasing 
humidity, where the mass-transfer impedance increases 
considerably. 
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1. Introduction 
With the prominent features of light weight, low cost, high energy effi- 
ciency, high power density, nonemission, and operation at low tempera- 
ture, polymer electrolyte membrane fuel cells (PEMFCs) have received 
much attention during the last 10 years [l-lo]. Most publications concen- 
trate on a single cell of the PEMFC or one of its components, but recently 
PEMFC stacks of various types and functions were developed [U-14]. 
The performance of a PEMFC stack is different than that of a single 
PEMFC cell. In this report, we explore the differences of the electrode 
kinetic processes between PEMFC stacks and single cells, and promote 
PEMFC stacks in military and civilian applications as portable power 
sources. An air-breathing strip PEMFC stack, one of the newest types of 
PEMFC stack, has two desirable aspects: First, it produces a relatively 
high voltage in a compact volume. Second, it uses air directly as a cathode 
reactant, resulting in a great decrease in weight. In the strip design, the 
weight per active area is about 40 percent less than that of bipolar plate 
stacks [15]. The air-breathing strip PEMFC stack is a two-dimensional 
fuel-cell stack, with individual cells in the same plane [ll]. This design 
allows all the cells to access the same reservoir of hydrogen, and allows 
the opposite face to be openly exposed to the air. However, in the investi- 
gation of the strip PEMFC stack, mass-transfer phenomena were observed 
when the stack was operating at high current density. This is probably 
because of the low oxygen concentration in air [6], low humidity, or poor 
heat dissipation. Because it is sometimes necessary to operate at high 
current density, such as in an electric vehicle, understanding the electrode 
kinetic processes is important. Since the early 196Os, several modeling 
studies have been conducted that elucidate cell potential versus current 
density behavior [5]. However, analytic expressions for the current- 
potential behavior have been developed only in special cases, such as 
when electrode reactions are either activation and ohmic or activation 
and mass-transfer controlled. When all forms of over-potentials (activa- 
tion, ohmic, and mass transfer) are present, as at high current density, 
there are no analytical solutions for the second-order differential equa- 
tions. Kim et al [5] have reported mass transfer phenomena in single 
PEMFC cells and modeled the potential-current behaviors with an em- 
pirical equation. Our research investigates the mass-transfer behavior in 
the strip air-breathing PEMFC stack and analyzes the electrode kinetic 
processes with an empirical equation. 



2. Experiment 

The air-breathing PEMFC stack was composed of either 10 cells or 5 cells 
connected in series. The active area of each electrode is approximately 
19 cm2. The open circuit voltage was approximately 9.4 V for the lo-cell 
stack and 4.8 V for the 5-cell stack. The air supply to the cathode was by 
convection from environmental air. The H, fuel was supplied through a 
sealed compartment at the anode side, and the stack was cooled naturally 
The electrolyte for the single cells was prepared with Nafion membrane 
(from DuPont Chemical Company). The cathode and anode both con- 
sisted of a commercially available catalyst (20% platinum on Vulcan 
XC-72 carbon from E-Tek) and aqueous Nafion solution. The Nafion 
membrane was located between the laminated cathode and anode layers, 
to form the membrane electrolyte assembly (MEA). The MEA was proc- 
essed by hot pressing at 120 “C. The catalyst loading was 0.4 mg Pt/cm2 
for both electrodes. The MEAs, metal foams, carbon cloths, and metal 
meshes were held tightly to form single cells, which were linked in series 
to form a stack. A Matheson TF601 multimeter was used to measure the 
hydrogen (99.99%) flow rate. The temperature and humidity were con- 
trolled with a Tenney environmental chamber (model BTRC) and a 
heatless dryer (model HF 200A). A Hewlett-Packard electronic load 
(model 6050A) and multimeter were used to measure stack’s current and 
voltage, respectively. The Tenney environmental chamber was controlled 
through a computer with Linktenn II software. In order to get reproduc- 
ible results, all electrochemical measurements were taken after equilibra- 
tion of temperature and humidity for 2 hr. 



3. Results and Discussion 

3.1 Typical Electrochemical Behavior of Mass Transfer and 
Its Modeling 

Figure 1 shows a typical potential-current curve of a lo-cell strip air- 
breathing PEMFC stack. As current increases, voltage decreases, ap- 
proaching 0 V. It is well known that the electrode polarization can be 
attributed to activation, ohmic, and mass-transfer processes. Activation 
occurs mainly at the beginning of the potential-current curve, the ohmic 
at the middle, and the mass transfer under high current conditions. Kim 
et al [5] and Rho et al [6] used an empirical equation to describe the 
potential-current behavior for a single cell. Here, we use the same equa- 
tion for a PEMFC stack, but define each term differently At low and 
median currents, the stack potential-current curve can be described with 
the following equation: 

Ei=E,-Blog(lOOOi)-Ri . (1) 

Here, Ei (V) and i (A) are the experimentally measured stack potential and 
current, respectively, and E, (V) is the open circuit potential of the stack, 
which is equal to the sum of open circuit potential of all single cells con- 
nected in series. B (mV de&) is the sum of the Tafel slope for the oxygen 
reduction from all single cells connected in series, R (!2) represents the 
sum of the resistance of all the single cells connected in series, such as 
resistances in the electrolyte membrane, which causes a linear variation 
of potential with current. The top curve in figure 1 is the computer- 
calculated result from equation (l), which deviates from the experimental 
points at higher currents. 
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The entire current range of the potential-current curve can be described as 

Ei = E, - B 10g(1000 i) - Ri - i, m exp (ni,) , (2) 

&l =i-id (wheni>&), (3) 

i, = 0 (when i I id) . (4) 

Here, id (A) is the smallest value of current that causes the voltage devia- 
tion from the linearity in figure 1. The id value can be obtained from the 
experimental curve or from the calculated curve with equation (1). The 
m (Q) and YI (A-l) are the mass-transfer parameters, which can be ob- 
tained by fitting the potential-current curve with computer simulation. 
Equation (2) gives an excellent fit with the potential-current curves over 
the entire range of current. For instance, the bottom line shown in figure 1 
is the computer-fitted curve with equation (2), which accurately fits the 
experimental points. The two lines calculated in figure 1 both give the 
same values of E,, B, and R. We use equation (2) to analyze the following 
experimental data. 

Effect of Humidity 

Figure 2 shows the potential-current curves and power-current curves for 
the strip PEMFC stack operating at various humidity levels. The lines are 
fitted to the experimental points with equation (2). The voltage and 
power decreased with the percentage of relative humidity (RH), which 
implies that mass-transfer-controlled processes become more pronounced 
at low humidity. The power-current curves show a peak as current is 
increased. For RH at 90% and 70%, the maximum powers are 8.3 and 
6.5 W, respectively. The kinetic parameters, obtained from computer 
fitting, are listed in table 1. As humidity increases, the R and R values 
both decrease, but the id value increases. The n value was kept constant 
during each calculation. Here we define another parameter, mass-transfer 
impedance (R,), to analyze the electrode processes: 

R, = AE/i = [i, m exp(ni, )]/i . (5) 

In this study, we use only the m and n parameters to obtain the best fit 
with the experimental points, and we use equation (5) to calculate the 
mass transfer impedance beyond the range of experimental data. Figure 3 
shows the calculated mass transfer impedance at 70% and 90% RH. At 
lower humidity, much larger mass-transfer impedance occurred. The 
mass-transfer impedance starts from zero and increases very quickly with 
current for both humidity conditions. 
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Figure 2. Humidity 
effect on polari- 
zation behavior of 
strip PEMFC stacks 
(10 cells) at constant 
temperature of 30 “C. 
Points and lines are 
experimental data 
and computer-fitted 
curves, respectively. 

Table 1. Electrode- 
kinetic and mass- 
transfer parameters 
for strip PEMFC stack 
at different humidity 
levels. Temperature 
constant at 30 “C. 

Figure 3. Mass 
transfer impedance 
versus stack current at 
different humidity 
levels. Environmental 
temperature is 30 “C. 
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3.3 Performance Maximization 

The performance of the strip PEMFC was maximized under the best 
humidity conditions: the hydrogen gas was introduced into the stack 
through a gas bubbler bottle, and the stack body was covered with a wet 
paper towel to keep humidity at saturation. This resulted in the best 
performance. Figure 4 shows the potential-current and power-current 
curves obtained from experimental data (points) and from computer 
calculations (solid lines). Compared with the condition of 90% RH, the 
maximized curves show better performance. The peak power for the 
maximized condition has reached -11 W, which is about 3 W more than at 
the 90% RH condition. The plot of mass transfer impedance versus stack 
current, with and without maximization, is shown in figure 5. The maxi- 
mized curve has much smaller R, values than that of the 90% RH condi- 
tion. Initially, mass transfer impedance differs little for the two curves 
(only -0.4 A current difference), but quickly becomes significant (-1.5 A 
current difference). The electrode kinetic parameters for the maximized 
condition are also shown in table 1. 

3.4 Effect of Temperature 

Figure 6 shows the potential-current and power-current curves for a 
series of environmental temperatures. At 10 “C, the potential-current 
curve is fitted well with equation (1), which implies that the electrode 
process at 10 “C is mainly controlled by activation and ohmic processes. 
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Figure 5. Mass 2.5 
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At 30 and 50 “C, equation (2) must be used to obtain the best fit with the 
experimental points. It is not surprising that the mass transfer impedance 
seems to increase with temperature. At the beginning and middle current 
ranges, the higher temperature provides the highest voltage and power; 
but at the high current range, the lower temperature delivers the highest 
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voltage and power. The electrode kinetic parameters obtained at different 
temperatures are shown in table 2. The parameters at 30 and 50 “C are 
only slightly different. The plot of mass transfer impedance versus stack 
current at temperatures 30 and 50 “C is shown in figure 7; the two curves 
show only slight separation (-0.1 A current difference). When the envi- 
ronmental temperature increases, the temperature of the internal stack 
will be even higher. If heat dissipation in the stack is not fast enough, the 
polymer electrolyte membrane and other electrode components may 
dehydrate, decreasing the rate of mass transfer. 

3.5 Heat Transport in Strip PEMFC Stack 

We inserted a thermocouple into the stack to measure its internal tem- 
perature. Figure 8 shows the internal temperature variation with time 
under constant current operation (1.04 A). Even when the environmental 
temperature is held at 30 “C, the internal temperature increases with time. 
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Figure 8. Internal 
temperature variation 
with time for strip 
PEMFC stack at 
constant current 
operation (I = 1.04 A). 
Environmental tem- 
perature constant at 
30 oc. 

Figure 9. Comparison 
of strip PEMFC stack 
performance between 
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(lo-cell) stacks. Per- 
formance for both 
stacks is maximized. 
Points and lines are 
experimental data and 
computer-fitted data, 
respectively. 
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potential-current and power-current curves for 5- and lo-cell stacks. The 
points in the figure were obtained from experimental data, and the lines 
were calculated with equation (2). The 5-cell stack data show much less 
curvature than do those of the lo-cell stack. However, the lo-cell stack has 
a peak power of -11 W, while the 5-cell stack has only -5 W. Table 3 
shows the kinetic parameters obtained from the calculations. It is interest- 
ing that the parameters of E,, B, R, and m for the 5-cell stack are about half 
that of the lo-cell stack, but the id value is about two times larger for the 
5-cell stack than for the lo-cell stack. Figure 10 shows a plot of mass 
transfer impedance versus stack current for the 5- and lo-cell stacks. The 
two curves are separated by a large gap (from 1.2 to 2 A). Although the 
5-cell stack has a much smaller impedance, the lo-cell stack is more 
efficient, because it produces a larger power density (more than double 
that of the 5-cell stack). 

Table 3. Electrode- 
kinetic and mass- 

Length E, 
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id 

transfer parameters 
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stack performance. 

Figure 10. Mass- 
transfer impedance 
versus stack current 
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3.7 Stability Test 

Figure 11. Stability of 
strip PEMFC stack 
after maximization of 
stack performance. 

The strip PEMFC stack was tested under constant current operation. 
Figure 11 shows the voltage variation with time. No voltage decrease was 
observed for constant current operation at 1.54 A. However, when current 
is increased to 2.05 A, the voltage is not stable, decreasing quickly with 
time-probably because of poor heat dissipation and membrane 
dehydration. 
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4. Conclusion 

An empirical equation was developed to describe the electrode processes 
of a PEMFC stack over the entire current range, including activation, 
ohmic, and mass-transfer processes. The potential-current and power- 
current curves of the strip PEMFC stack were fitted with the empirical 
equation under a variety of experimental conditions, such as humidity, 
temperature, and stack length, and a concept of mass-transfer impedance 
was defined. This empirical equation can be used to calculate the mass 
transfer impedance beyond the experimental points. For the strip PEMFC 
stack, the mass-transfer impedance occurs only at high current range. 
With a decrease in humidity, the mass-transfer impedance increases 
considerably. With temperature changes from 30 to 50 “C, the mass- 
transfer impedance increases only slightly For the strip PEMFC stack at 

low-temperature operation, less mass-transfer impedance was observed, 
which is attributed to a heat-transfer problem at higher environmental 
temperature. Increasing the total number of cells in the PEMFC strip 
increases the mass-transfer impedance proportionally However, the 
overall power density for longer lengths of strip is larger. 
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